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Introduction
Plant’s volatile, odorous principles are generally known as essen-
tial oils. These are also called ethereal oils. These volatile prin-
ciples are generally present in secretory structures (like glands, 
ducts, cavities, and hairs) of plants. Essential oils are found only in 
10% of plant kingdoms.1 Chemically, these oils belong to terpenes, 
phenols, and nitrogen-bearing compound categories composed of 
carbon and hydrogen, and other elements found in their molecular 
structure are oxygen, nitrogen, and sulphur.2

Furthermore, essential oils are valuable secondary metabolites 
of plants, containing various bioactive components that serve mul-
tiple functions in plants and possess therapeutic potential. They 
protect plants from the attack of pathogenic microorganisms and 
play an influential role in humans for the treatment of chronic dis-
eases and the improvement of various mental health syndromes.3 
Being small and lipophilic, they easily penetrate the skin, exhibit 
rapid distribution across tissues and organs, and demonstrate swift 
action. Consequently, essential oils are widely used in traditional 
remedies for various applications. They possess broad spectrum 
of biological activities. Recent studies are using system biology to 
identify and compile the effects and mechanisms of essential oils.4

System biology is a unifying approach that connects cells, tis-

sues, and organ systems via molecular components into one sys-
tem. Interactions among molecular components at the cellular 
level open a new way to study and evaluate different pathways, 
diseases, and other characteristics.5 System biology comprises 
various biological networks like genetic regulatory, protein inter-
action, metabolic, and signaling networks. The molecular level is a 
biological network responsible for chemical interactions and cellu-
lar functions in the biological system.6 It is a broad framework for 
leading quantitative and inclusive scientific inquiry that facilitates 
a rigorous investigation of the intricacy of biological systems at 
all levels of cellular organization.7 This review aims to identify 
the potential mechanisms of action of essential oils within systems 
biology, detailing the various mechanisms through which essential 
oils exert their effects.

Biological activities of essential oils
Recent studies on essential oils have highlighted their diverse 
biological activities, including antimicrobial, antiviral, antihel-
minthic, antioxidant, antiulcer, anti-inflammatory, insecticidal, 
larvicidal, and immunomodulatory effects. Essential oils find mul-
tifaceted applications in the food, perfume, herbal, and cosmetic 
industries. In the food industry, they are used for flavoring and 
preservation, while their aromatic properties are exploited in the 
cosmetic industry as perfumery components.8,9 The various ways 
that essential oils work through biological networks to exert their 
effects and their potential mechanisms of action are described be-
low. (Figs. 1 and 2).

Antioxidative activities of essential oils
The excess of free radicals is responsible for the oxidation process. 
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Free radicals induce lipid peroxidation by attacking bio-mem-
branes and start a chain reaction in the human body. As a result, or-
gans and biofilms in the body get harmed in DNA and protein and 

ultimately cause various diseases like cancer, Alzheimer’s, athero-
sclerosis, and Parkinson’s.10,11 Free radicals generally evolve from 
external forces like pollution and ultraviolet and internal forces 

Fig. 2. Role of essential oils in inflammation, cancer, and cell death. (a) Anti-inflammatory mechanism of essential oil. (b) Anticarcinogenic mechanism of 
essential oil. (c) Mechanism of induction of cell apoptosis by essential oil. EH, epoxide hydrolase; GST, glutathione S-transferase; QR, quinone reductase; 
UGT, uridine-5’-diphospho-glucuronosyltransferase.

Fig. 1. Mechanism of essential oils to control oxidative stress, microbes and diabetes. (a) Antioxidative mechanism of essential oil. (b) Antimicrobial 
mechanism of essential oil. (c) Anti-diabetic mechanism of essential oil. GLUT4, glucose transporter protein type-4; MAPK, mitogen-activated protein kinase.
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like stress and autoxidation. Lipids are essential compounds for the 
human body, serve as building blocks and energy sources, and are 
required for various biological functions.12,13

There are various in vitro approaches for the detection of the 
antioxidant potential of compounds. Among them Diphenylpicryl-
hydrazyl (DPPH) assay, β-carotene/linoleic acid assay, chelating 
effect, and reducing effect are used prominently.

Mechanisms through essential oils exhibit antioxidant poten-
tial
In the in vivo assessment of the antioxidant effects of compounds, 
the levels of reduced glutathione, superoxide dismutase, catalase, 
and nitric oxide are measured. An increase in the levels of reduced 
glutathione, superoxide dismutase, and catalase, alongside a de-
crease in nitric oxide levels, indicates a positive antioxidant effect 
of the compound. This effect is achieved by terminating the chain 
reactions initiated by free radical intermediates, as these reagents 
undergo oxidation themselves and prevent further oxidation reac-
tions.14,15

Numerous studies have validated the antioxidant potential of 
essential oils. The analysis of essential oils has confirmed their 
properties, including hydrogen donating capabilities, free radical 
scavenging abilities, and the capacity to interrupt the chain reac-
tion of lipid peroxidation,16 thereby safeguarding healthy cells 
from damage (Fig. 3).

Mechanism of free radical scavenging action of essential oils
The electron or hydrogen-donating constituent(s) of essential oil 
donate their electron to free radicals and thus reduce the number 
of free radicals in the body. The activity is measured with the help 

of DPPH assay in which antioxidant constituent donates their elec-
tron to the DPPH radical. The reaction is confirmed by the change 
of color of DPPH from colorless to purple/yellow. The concentra-
tion is determined by taking its absorption at 519 nm.17,18

Mechanism of inhibition of lipid peroxidation by essential oils
A monoterpene hydrocarbon, γ-terpinene, a component of essen-
tial oils retards the peroxidation of linoleic acid. During the chain 
reaction of linoleic acid linoleylperoxyl radicals generated, peroxi-
dation of γ-terpinene yields hydroperoxyl radical. Both free radi-
cals react quickly and form a non-radical product and retard the 
peroxidation of linoleic acid.19

Phenolic components of essential oils donate the phenolic hy-
drogen atom to free radicals to form resonance-stabilized phenoxyl 
radicals, which cannot propagate a chain reaction. This inhibits the 
chain reaction of lipid peroxidation.20

In some cases, highly oxidizable components of essential oil 
get oxidized with the substrate and form peroxyl radicals, which 
rapidly form non-radical products and decrease the concentration 
of free radicals.20

Mechanism of essential oil on endogenous antioxidants
A Study has demonstrated that essential oils enhance the content 
of glutathione, a natural antioxidant by protecting the enzyme 
glutathione reductase.21 This enzyme is responsible for reduc-
ing glutathione disulfide (GSSG) to its sulfhydryl form, known 
as glutathione (GSH), a potent endogenous antioxidant agent.22 
Glutathione, chemically referred to as γ-L-glutamyl-L-cysteinyl-
glycine, is an eminent endogenous antioxidant, often termed the 
master antioxidant. It exists in two forms, reduced (GSH) and oxi-

Fig. 3. Antioxidative role of essential oils. (a) Free radical scavenging by essential oils. (b) Lipid peroxidation inhibition by essential oils. (c) Protection of 
glutathione reductase by essential oil.
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dized (GSSG/GSH disulphide). In its reduced state, the cysteine 
group of glutathione donates an electron to free radicals, reacts 
with another glutathione molecule, and forms GSSG. The en-
zyme glutathione reductase then regenerates glutathione from glu-
tathione disulfide. In a healthy cell, more than 90% of glutathione 
is present in the reduced state, while less than 10% is found in the 
oxidized state.15

Glutathione protects against toxic metals, alcohol, and organic 
pollutants. It regulates cell growth and maintains immune func-
tion. It reduces mucus and inflammation from the airway during 
lung detoxification.23

Superoxide dismutase stimulates superoxide anions to hydro-
gen peroxide, which is later converted to water and oxygen by cat-
alase.24 In mammals, superoxide dismutases (SODs) are found in 
three isoforms SOD1 (Cu/ZnSOD), SOD2 (MnSOD), and SOD3 
(Cu/ZnSOD). These three isoforms SOD1, SOD2, and SOD3 are 
present in cytoplasm, mitochondria, and extracellularly, respec-
tively.25 The Superoxide dismutase requires a metallic catalyst for 
activation and provides defense against superoxide (O2

•−) particu-
larly. It is responsible for inhibiting oxidative activation of nitric 
oxide; thus, it protects endothelial and mitochondrial dysfunction 
by preventing peroxynitrite formation.26

Nicotinamide adenine dinucleotide phosphate hydrogen (NA-
DPH) oxidase, xanthine oxidase, nitric oxide synthase (NOS), li-
poxygenase, and mitochondrial enzymes generate O2

•−.27 The gen-
erated superoxide is converted to H2O2 by SOD. Dismutation of 
H2O2 by superoxide dismutase produces hydroxyl (OH•) free radi-
cles. Superoxide-free radicles and hydroxyl-free radicles act on 
lipid membranes and encourage the formation of lipid radicle and 
lipid peroxy radicles, which promote oxidative stress and cause 
lipid peroxidation.28 Further, it transformed into water in the pres-
ence of catalytic enzymes like glutathione peroxidases (GPx) and 
peroxiredoxins. Superoxide dismutase is also called first-line de-
fense against superoxide anion radical toxicity because it obstructs 
the formation of a strong oxidant of peroxynitrite (ONOO−).29

Catalase, also known as classical catalases or monofunctional 
heme catalases, plays a crucial role in detoxifying H2O2 by con-
verting it into water and oxygen.30,31 Studies have shown that it 
scavenges hydrogen peroxide through a two-step mechanism. In 
the first step, catalase reacts with hydrogen peroxide in its ferric 
state, forming a Compound I complex and converting the ferric 
state to the ferrous state. In the subsequent step, the Compound 
I complex reacts with another molecule of hydrogen peroxide, 
forming water and oxygen. Catalase thus facilitates the removal 
of hydrogen peroxides, which are generated in red blood cells and 
protects pancreatic β-cells from the damaging effects of hydrogen 
peroxide.32,33

Excess and unregulated nitric oxide production injures cell pro-
teins and alters their functions. Its deficiency is responsible for the 
dysfunction of the endothelial system.34

Nitric oxide is produced from L-arginine and oxygen in the 
presence of cofactors, including tetrahydrobiopterin (BH4), by 
NOS. Along with nitric acid, citrulline is also generated by the 
reaction. Nitric oxide further oxidized in blood and tissues, leading 
to nitrite and nitrate formation, which have a half-life of 2 min and 
6 h, respectively. Nitric oxide reduces mitochondrial respiration 
and affects energy production by interacting with cytochrome c 
oxidase.35

Electron from NADPH flows from the reductase sphere to the 
oxidative sphere of NOS (Nitric oxide synthase). NOS is a heme-
containing enzyme with oxidative and reductase spheres linked 
via calmodulin. Electron transfer requires two cofactors, flavin 

adenine dinucleotide and flavin mononucleotide. Electrons finally 
reach the reduced heme iron of NOS’s oxidative domain, permit-
ting binding of oxygen molecules and initiating nitric oxide gen-
eration.36

The mechanism of oxidation by nitric oxide is not known. How-
ever, it is fictional that it induces apoptosis by interacting with ami-
no acid receptors, depleting cellular NAD+, and activating caspas-
es. Nitric oxide regulates transcription factors or disperses in blood 
by binding with the heme portion of cytochrome c oxidase in mi-
tochondria. In the vascular lumen, nitric oxide binds with ferrous 
heme, forming methemoglobin and nitrate.37 In smooth muscle 
cells, essential oils modulate the activity of heme-containing gua-
nylyl cyclase enzyme. Guanylyl cyclase is responsible for synthe-
sizing cyclic guanosine 3′,5′-cyclic monophosphate from guano-
sine triphosphate through dephosphorylation. This synthesis, in 
turn, activates potassium channels and inhibits calcium channels. 
The inhibition of calcium channels leads to the phosphorylation of 
the myosin chain and sarcoplasmic proteins by activating protein 
kinase. This process promotes the sequestration of calcium ions 
in the sarcoplasmic reticulum while reducing their concentration 
in the cytosol, which impacts phosphorylation and consequently 
results in smooth muscle relaxation (Fig. 4).38

Works that reflect the antioxidant activity of essential oils
Essential oil from the stem of Eugenia caryophylata showed a 
higher scavenging effect at 0.82 ± 0.15 µg/mL as compared to es-
sential oil obtained from bud and leaf at the dose of 1.18 ± 0.56 
µg/mL and 1.16 ± 0.74 µg/mL respectively.39 The essential oil of 
Croton campinarensis exhibited 1.88 ± 0.08 mM·L−1 the Trolox 
Equivalent Antioxidant Capacity in the DPPH assay. It is almost 
double the standard Trolox.40

Essential oils of Anethum graveolens and Thymus daenensis ex-
hibited higher lipid peroxidation inhibitory effects than synthetic 
standard compounds. Essential oil of Anethum graveolens showed 
a higher half-maximal inhibitory concentration (IC50) superoxide 
radical scavenging effect than essential oil of Thymus daenensis at 
the dose of 0.001 and 0.013 mg. The essential oil of Anethum gra-
veolens and Thymus daenensis showed (IC50) nitric oxide radical 
scavenging effect at the dose of 0.0014 and 0.005 mg.41

In vivo assessment of Artemisia visnaga essential oil proved an 
increase in the activity of catalase, superoxide dismutase, and plas-
ma glutathione peroxidase.42 Origanum rotundifolium Boiss es-
sential oil was found to have an effective radical scavenging effect 
and inhibitory effect on lipid peroxidation at the dose of 15.30% ± 
0.64 mg·mL−1 and 34.46% ± 1.82 mg·mL−1 respectively.43

Amiri worked on Thymus daenensis (lancifolius) Celak and 
Thymus eriocalyx. He found better scavenging effect of Thymus 
daenensis (lancifolius) Celak at the dose of 19.1 ± 0.1 µg/mL and 
better inhibitory lipid peroxidation effect of Thymus eriocalyx at 
the dose of 34.2 ± 0.4 µg/mL.44 Salviae aetheroleum (Sage) repli-
cates a good radical scavenging effect with 10.5 µL/mL and effec-
tive inhibition of 15-lipoxygenase (responsible for the generation 
of lipid peroxides via oxidation of unsaturated fatty acids) at 0.064 
µL/mL.45

Carvacrol isolated from the Nigella sativa L. essential oil re-
flects prominent radical scavenging action. It has also been found 
to have protective effects against lipid peroxidation.46 Syzygium 
aromaticum,47 Nepeta ciliaris, and Nepeta leucophylla showed 
good radical scavenging effects at 5.76 µg·mL−1, 0.9 ± 0.2 mg/
mL, and 1.2 ± 0.5 mg/mL, respectively. Erigeron mucronatusi, Er-
igeron annuus, and Nepeta leucophylla showed better inhibitory 
effects on lipid peroxidation.48

https://doi.org/10.14218/FIM.2023.00071


DOI: 10.14218/FIM.2023.00071  |  Volume 3 Issue 2, June 2024120

Kashyap R.: Explicit mechanism of essential oils at cellular levelFuture Integr Med

The effective free radical scavenging effect is also shown by 
Origanum campactumi, Curcuma zedoaria Rosc, Eucalyptus ca-
maldulensis and Phoenix dactylifera.49–51 Ozkan et al.52 worked 
on Salvia pisidica essential oil and found its better effect on scav-
enging of free radical and hydroxy radical and inhibition of lin-
oleic acid.

Antimicrobial role of essential oils
Essential oils have demonstrated potential as antimicrobial agents, 
with research uncovering various mechanisms of action against 
microbes. The antimicrobial effects of essential oils are manifested 
through the following mechanisms: a) rupturing the microbial cell 
wall or altering the phospholipid bilayer, leading to the expulsion 
of cell components; b) increasing the loss of potassium ions from 
the cytosol; c) deactivating or destroying genetic material; d) im-
peding the respiration process; and e) weakening enzyme systems 
involved in synthesis.

Antibacterial mechanism of action of essential oils
Studies have shown that essential oils increase the permeability of 
the bacterial cell membrane, which results in the leakage of intra-
cellular components and the uptake of extracellular macromolecu-
lar substances.53 This disrupts the cell wall structure and causes 
the microbial cells to shrink.54 Changes in membrane permeability 
lead to the efflux of internal potassium and phosphate ions. A high 
concentration of extracellular potassium ions can cause severe and 
irreversible damage to the cytoplasmic membrane. Phosphate, a 
major component of adenosine phosphates (mono, di, and triphos-
phates), DNA (deoxyribonucleic acid), and RNA (ribonucleic 
acid), is typically released by hydrolysis. This release can destroy 
structures and interrupt the synthesis of specific macromolecules, 

such as DNA and RNA.55 It also inhibits the activity of the enzyme 
ATPase and modifies the growth of bacteria. A study on the es-
sential oil of Cupressus funebrisi revealed the exclusion of bacte-
rial protein by rupturing the cell wall, which is responsible for the 
maintenance of the integrity of the cell.56

Disruption in cell membrane permeability results in extensive 
dyshomeostasis (imbalance of homeostasis). Calcium toxicity, 
proteolysis activation, osmotic stress, and oxidative damage are 
the results of alteration in homeostasis, ultimately leading to cell 
death.57 Efflux of potassium alters the conductivity of the cell and 
leads to the loss of potassium ions along with water, resulting in 
shrinkage of the cell and leading to the apoptosis of the cell.58,59

Works that reflect the antimicrobial activity of essential oils
Essential oil of Origanum vulgare L found strong antimicrobial 
action against Staphylococcus aureus, Enterococcus faecium and, 
Escherichia coli isolates when tested for minimum inhibitory 
concentration, ranging from 0.29 to 1.15 mg/mL probably due 
to distraction of bacterial cytoplasmic membrane structure and 
function.60 Essential oils of Origanum compactum give a positive 
response for the cell permeability alteration and integrity when 
tested for leakage of cellular components against Escherichia coli 
and Bacillus subtilis.61

Crude essential oils of lemongrass, palm rosa, and eucalyptus 
showed higher leakage of bacterial cellular material than the indi-
vidual major components (citral, geraniol, and citronellal) of es-
sential oils when tested against Staphylococcus aureus and Escher-
ichia coli. The essential oil and its components have been observed 
to increase the concentration of extracellular potassium ions com-
pared to the control. This effect is likely due to the oils’ ability to 
disrupt the permeability barrier of microbial membranes.62

Fig. 4. Function of nitric oxide and role of essential oil. 
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The in vitro antibacterial activity of the leaf essential oil from 
Forsythia koreana demonstrated potent antibacterial effects 
against foodborne pathogenic bacteria. At a concentration of 5 mL/
disc, the inhibition zone diameters measured 12.3 mm for Salmo-
nella enteritidis KCTC 12243, 8.0 mm for Escherichia coli ATCC 
8739, and 9.3 mm for Staphylococcus aureus ATCC 6538.

The essential oil diminishes the cell integrity, increases perme-
ability, and distorts membrane permeability.63

Estragole, isoeugenol, and eugenol, the phenylpropene constit-
uents of essential oil, inhibited enzymatic activity up to 50%, 90%, 
and 88%, respectively, at the concentration of 30 milimolar.64 Mo-
narda didyma essential oil reduces the activity of glucose-6-phos-
phate dehydrogenase, citrate synthase, isocitrate dehydrogenase 
and α-ketoglutarate dehydrogenase in Carbapenem-resistant Kleb-
siella pneumoniae. It also inhibits biofilm formation, damages cell 
membrane structure, and inhibits energy metabolism.65

Anticarcinogenic role of essential oils
Cancer is a non-communicable and multifactorial disease that has 
unmanageable growth and abnormal mechanisms of cell division. 
In various studies, natural compounds showed promising chemo-
therapeutic properties.66,67 Cancer can be categorized into three 
distinct stages. In the first stage, a carcinogen causes a mutation 
in the cell and damages the genetic materials. The second stage 
is identified with unconditional cell growth, deformation of tissue 
structure, and inflammation. In the third stage, cells form tumors 
by unlimited cell growth and modification in gene expression.68

Natural compounds are an important part of several clinically 
useful anti-cancer agents. Vincristine, vinblastine, camptothecin 
derivatives, etoposide, and paclitaxel are effective and established 
anti-cancer compounds.69

Anticarcinogenic mechanism of essential oil
Essential oils or their components work as antimutagenic com-
pounds by a) constraining mutagens entry inside the cell and b) 
decreasing enzyme activity, which supports the formation of mu-
tagens like cytochrome-P450.70,71 They act as a detoxifying agent 
via enhancing the activity of enzymes responsible for detoxifica-
tion like glutathione S-transferase (GST),72 uridine-5′-diphospho-
glucuronosyltransferase, quinone reductase (QR) and epoxide hy-
drolase.73–75 It worked as an antioxidant agent by protecting the 
oxidative impairment of cells through increasing endogenous anti-
oxidant enzymes like GSH, SOD, catalase, and GPx.14 It also acts 
as an anti-proliferative agent and indices apoptosis by a) changing 
the mitochondrial membrane barrier, b) increasing reactive oxygen 
species, c) decreasing internal glutathione level,76,77 d) increasing 
cytochrome-C activity, e) disturbing B-cell lymphoma-2 and B-
cell lymphoma-2-associated X protein (Bcl/Bax) proportion, f) 
increasing caspase 3 and caspase 9 action, and g) poly ADP ribose 
polymerase.78–80

Mutagens are substances that cause DNA damage, affecting 
DNA replication and leading to mutagenesis through three main 
processes: a) reduction in replication fidelity, characterized by in-
correct nucleotide incorporation; b) frameshift mutations, which 
involve disturbances in the DNA sequence due to the addition or 
subtraction of nucleotides in the newly synthesized DNA strand; 
and c) replication hindrance, where incorporation points in DNA 
are blocked.81

Cytochrome P450 represents a large family of enzymes respon-
sible for catalyzing various oxidation-reduction reactions, present 
in all mammalian tissues, with the most reactive forms found in 
the liver, kidney, and small intestine.82 These enzymes act as meta-

bolic activators for many procarcinogens, converting them into 
carcinogens. The further oxidative activation of carcinogens leads 
to the development of electrophilic reactive intermediates, which 
bind to DNA and cause mutation.83

Detoxifying enzymes play a crucial role in converting toxic me-
tabolites into less toxic and harmless compounds, facilitating their 
excretion from the body. This process, known as biotransformation 
or detoxification, is divided into two phases: Phase I and Phase II.

Phase I reactions are non-synthetic reactions, including oxi-
dation, reduction, and hydrolysis. The site of phase I is the liver. 
Phase II reactions are biosynthetic or conjugation reactions.84 
GSTs are a phase II enzyme of biotransformation reaction. A group 
of eight dimeric enzymes maintains cell homeostasis and catalyzes 
the conjugation reaction of reduced glutathione. It catalyzes the 
metabolism of electrophiles generated from cytochrome P450 and 
converted to glutathione conjugates, which can be readily excreted 
outside the body.85,86 In some cases, these glutathione conjugates 
get more reactive and form episulfonium intermediates, which are 
responsible for DNA modification.87 For detoxification reaction, 
intracellular and extracellular control of the homeostatic environ-
ment is required. It is achieved by maintaining the GSH/GSSG ra-
tio. The glutathione conjugate converts lipophilic compounds into 
more readily eliminated water-soluble metabolites.88

Uridine diphosphate-glucuronosyltransferases are responsi-
ble for converting many exogenous, endogenous lipophilic com-
pounds and xenobiotics into more polar substances so that they can 
be readily excreted from the body through bile and urine.89 It is an 
important enzyme of glucuronidation (detoxification mechanism 
of the body), responsible for the biotransformation of carcinogens 
that enter into the body through diet or as pollutants from the air.90 
In the bladder, acidic urine is responsible for the hydrolysis of glu-
curonide-carcinogen to release ultimate carcinogens.91,92

QR plays a pivotal role in the detoxification process by reduc-
ing electrophilic quinones. In cancerous cells, QR can activate 
certain chemotherapeutic agents, such as mitomycins and aziri-
dylbenzoquinones, promoting the death of cancer cells.93 Epoxide 
hydrolase is instrumental in inactivating epoxide genotoxic inter-
mediates, thereby protecting the body from epoxide toxicity. It op-
erates by binding with the substrate to form enzyme-substrate ester 
intermediates, which are subsequently hydrolyzed by an activated 
water molecule (Figs. 5 and 6).94

Works that reflect the anticarcinogenic activity of essential 
oils
Essential oils of Citrus sinensis and Citrus latifolia, both prove 
their antimutagenic ability by reducing alkylated DNA damages 
through a reduction in the expression of base-substitution muta-
tions and by reducing the activation of pre-mutagens like 2AA.95 
Monoterpenes found in sage and sage oil have been identified as 
antimutagenic against UV-induced mutations. Studies have shown 
that essential oil reduces mitomycin C-induced chromosome ab-
errations in mice, demonstrating its chemoprotective properties.96 
Additionally, essential oil and two compounds, 1,8-cineole and 
geraniol, from Amomum tsao-ko were tested on a series of human 
cell lines and found to be particularly effective against human liver 
carcinoma cell lines (HepG2), with an IC50 value of 31.80 ± 1.18 
µg/mL. Essential oil proved to be more effective compared to its 
individual components and also increased the percutaneous per-
meation rate. Cytotoxic studies have confirmed the cytotoxic ef-
fect of the essential oil.97

Boswellia sacra essential oil was tested for three human breast 
cancer cell lines (T47D, MCF7 and MDA MB-231) and avoids 
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cellular network formation, induces cancer cell death and cessation 
of multicellular tumor spheroids.98 Casearia sylvestris essential oil 
showed a selective cytotoxic effect against human cervix carcino-
ma cell line (HeLa), human lung cancer cells (A-549), and human 
colon adenocarcinoma cells (HT-29) at 63.3, 60.7 and 90.6 µg/
mL respectively.99 Commiphora gileadensis essential oil exhibited 
anti-proliferative and proapoptotic effects through DNA “ladder” 
and caspase-3 activation in cancer cell lines.100 Thymus fallax es-
sential oil decreases cell index values in a concentration dependent 

manner when tested against colorectal cancer cells (DLD-1). 50% 
inhibitory concentration was found at 0.347 mg/mL.101

Rosmarinus officinalis essential oil exhibited dose-dependent 
cytotoxicity (inhibition of cell proliferation) against human breast 
adenocarcinoma (MDA-MB-231) cells with IC50 value at 59.35 
µg/mL.102 Citrus aurantifolia essential oil tested against colon can-
cer cells (SW-480) at 100 µg/mL and showed effectivity through 
DNA fragmentation and induction of caspase-3.103

Ocimum basilicum essential oil found good anticarcinogenic 

Fig. 5. Mechanism of induction of cancer cells death by essential oils. 

Fig. 6. Antimutagenic and detoxifying mechanism of essential oil. 
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activity against human liver adenocarcinoma cell lines (Hep3B) at 
56.23 ± 1.32 µg/mL and human breast cancer cell lines (MCF-7) 
at 80.35 ± 1.17 µg/mL.104 Essential oil of Zingiber ottensii plants 
showed 50% minimum inhibitory activity against human lung can-
cer cells (A-549) at 43.37 ± 6.69 µg/mL, human breast cancer cell 
lines (MCF-7) at 9.77 ± 1.61 µg/mL, human cervix carcinoma cell 
line (HeLa) at 23.25 ± 7.73 µg/mL and myelogenous leukemia cell 
lines (K562) at 60.49 ± 9.41 µg/mL.105

Nepeta mahanensis essential oil showed significant cytotoxic 
activity against MCF-7 (breast cancer cell lines), Caco-2 (human 
colorectal adenocarcinoma cell lines), SH-SY5Y (human Neuro-
blastoma cell line), and HepG2 (human liver carcinoma cell lines) 
cancer cell lines. Its cytotoxic effect was due to the necrosis/apop-
tosis-inducing action.106

Anti-diabetic role of essential oils
Upon uptake, glucose is phosphorylated to glucose-6-phosphate in 
the presence of the glucokinase enzyme. Its subsequent metabo-
lism generates ATP, which then inhibits ATP-sensitive potassium 
channels. The inhibition of these potassium channels leads to the 
opening of voltage-dependent calcium channels (L-type), result-
ing in an increase in intracellular calcium ions, which triggers the 
release of insulin.107

Additionally, two components, glucagon-like peptide 1 and glu-
cose-dependent insulinotropic peptide, further enhance the pancre-
atic cells’ ability to secrete insulin. Both components are released 
in the intestine following the ingestion of food and are short-lived, 
being deactivated by the enzyme dipeptidyl peptidase-4.108–110

A high-fat diet stimulates mitochondrial proteins and transcrip-
tion factors that cause inflammation and dysfunction of adipose 
tissues. The changes induce the production of pro-inflammatory 
cytokines such as tumor necrosis factor-α (TNF-α) and interleu-
kins (IL-6 and IL-1β), known as metabolic inflammation, which 
plays a significant part in insulin-resistant and type-2-diabetes 
mellitus subsequently.111,112

Anti-diabetic mechanism of essential oil
As anti-diabetic, essential oils generally scavenge the free radicals 
and retard glucose oxidation and protein glycation as well.113 Es-
sential oils modulate various signal transduction pathways linked 
to glucose metabolism, such as mitogen-activated protein kinase 
(MAPK), glucose transporter protein type-4 (GLUT4), Caspase-3, 
etc.114 They significantly reduce the expression of TNF-α, IL-1β, 
IL-4, IL-6, iNOS and cyclooxygenase 2 (COX-2).115,116 Essential 
oils increase insulin levels, glycoprotein enzymes, enhance endog-
enous antioxidant enzymes like SOD, catalase, and GPx, reduce 
glutathione and vital glycolytic enzymes.117 Essential oils inhibit 
α-amylase and glucosidase enzymes, which catalyze carbohydrate 
metabolism, thus retard glucose release and absorption and, in 
turn, suppress postprandial hyperglycemia.118,119

MAPK activity encompasses extracellular-signal-regulated 
kinases (ERKs), jun amino-terminal kinases (JNKs), and p38/
SAPKs (stress-activated protein kinases). Research indicates that 
inhibiting or modulating the activity of p38 MAPK and JNKs 
can restore the function of aquaporin 7 (AQP7), a member of the 
aquaporin family. This restoration leads to an increased influx of 
glycerol, thereby stimulating insulin secretion.120,121 Caspase 3 ac-
tivity plays a crucial role in β-cell apoptosis, which reduces insulin 
production. Altering or diminishing caspase 3 effects can decrease 
β-cell apoptosis and maintain insulin levels.122,123 Upon the signal 
of insulin, GLUT4 translocated from intracellular vesicles to the 
plasma membrane to enhance glucose metabolism and reverts to 

intracellular vesicles once glucose levels normalize.124,125

Hepatic PGF2α (prostaglandin F 2α) induces insulin resistance. 
It binds to the FP receptor in the liver, increases the activity of 
enzyme phosphoenol-pyruvate carboxykinase (PCK1) and glu-
cose-6-phosphatase (G6Pase), and increases the process of gluco-
neogenesis. COX-2 and PGI2 (Prostagaldin I 2/Prostacyclin) also 
induce gluconeogenesis and induces insulin resistance.126 Insulin 
resistance induces lipolysis and decreases intracellular triglyc-
eride storage. It reduces fat content and increases the release of 
non-esterified fatty acids, which deposit fat from adipose tissue 
into the liver and muscles. Furthermore, adipose insulin resistance 
facilitates the release of adipokines (such as adiponectin, leptin, 
and resistin) and cytokines (like TNF-α, IL-6 and IL-1β) leading 
to chronic inflammation and hyperglycemia. Thus, inhibition of 
prostaglandins and cytokines retards insulin resistance, enhances 
glycoprotein enzymes, and raises insulin levels.127

α-amylase (salivary and pancreatic) transformed carbohydrates 
into glucose.128 It hydrolyzes the glycosidic bond of polysaccha-
rides and converts them into oligosaccharides and further into sim-
ple sugars.129 Glucosidase (intestinal) converted disaccharides into 
glucose. Inhibition of both enzymes delayed glucose absorption 
and its transportation into the blood.130

Deactivation of AMP-activated protein kinase (AMPK) impairs 
the function of GLUT4, whereas its activation enhances GLUT4 
expression. Activation of AMPK prevents the polarization of pro-
inflammatory macrophages (M1) triggered by lipopolysaccharide, 
thereby reducing inflammation and subsequently improving insu-
lin resistance. Furthermore, AMPK activation boosts glucose uti-
lization in peripheral tissues by inhibiting liver gluconeogenesis, 
supporting metabolic balance and glucose homeostasis (Figs. 7 
and 8).131

Works that reflect the anti-diabetic activity of essential oils
The histological and other studies proved that the essential oil of 
Pelargonium graveolens at the dose of 150 mg/kg body weight 
in alloxan-induced diabetic rats gives better results than gliben-
clamide. The study suggests that it worked by improving glucose, 
persuading insulin release, and peripheral acceptance of glucose. 
It decreases blood glucose and increases hepatic glycogen.132 In-
traperitoneal administration of the Citrus sinensis essential oil in 
alloxan-induced diabetic rats significantly reduces fasting blood 
glucose and hepatic glucose and increases hepatic glycogen at 110 
mg/kg body weight. It is supposed that the effect was due to the 
presence of monoterpenes, which have insulin-mimetic properties, 
potentiate insulin secretion, and enhance glucose uptake from the 
blood.133

Essential oils of Salvia officinalis and Mentha suaveolens 
showed inhibitory effects on α-amylase and α-glucosidase. 
α-amylase inhibition was obtained at 81.91 ± 0.03 µg/mL (IC50 
value) and 94.30 ± 0.06 µg/mL (IC50 value), and α-glucosidase 
inhibition was obtained at 113.17 ± 0.02 µg/mL (IC50 value) and 
141.16 ± 0.2 µg/mL (IC50 value) by Salvia officinalis and Mentha 
suaveolens respectively.134 Coriandrum sativum L. essential oil 
showed a protective effect on kidney and pancreatic cells in histo-
logical studies in streptozotocin-induced diabetic rats. By protect-
ing the β-cells, it improves insulin secretion and helps to reduce 
blood glucose levels.135 Myrtus nivellei’s essential oil findings 
showed its hypoglycemic potential when it was tested for strep-
tozotocin-induced diabetic rats. It significantly decreases blood 
sugar and triglyceride levels.136

Clove essential oil has demonstrated a significant anti-diabetic 
effect by reducing blood glucose levels and acting on glucose met-
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abolic enzymes in streptozotocin-induced diabetic rats. Addition-
ally, it successfully inhibited α-amylase.137 Lavandula stoechas L. 
(Lavender) essential oils exhibited an antihyperglycemic effect in 

alloxan-induced diabetic rats by protecting against oxidative stress 
and decreasing lipid peroxidation through the activation of endog-
enous antioxidant enzymes.138

Fig. 7. Anti-diabetic mechanism of essential oils through signaling pathways. AQP, aquaporin; GLUT4, glucose transporter protein type-4; JNKs, jun amino-
terminal kinases; MAPK, mitogen-activated protein kinase.

Fig. 8. Anti-diabetic mechanism of essential oils via inhibition of prostaglandins.
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Origanum compactum essential oil showed potential anti-dia-
betic activity through inhibition of α-amylase and α-glucosidase. 
Carvacrol and thymol, components of essential oil, showed the 
best binding affinity towards the enzymes and modulated their ac-
tivities.139 Black pepper essential oil showed stronger inhibition 
against α-glucosidase than α-amylase. It alters the blood glucose 
level by reducing starch catabolism.140

Anti-inflammatory role of essential oils
Inflammation is a fundamental protective response triggered 
by tissue damage or infection, serving as a defense mechanism 
against pathogens and facilitating the removal of damaged host 
cells. The inflammatory response leads to increased permeabil-
ity of the endothelial lining, influx of blood leukocytes into the 
interstitial space, an oxidative burst, and the release of cytokines. 
It also promotes the metabolism of arachidonic acid, enhancing 
the activity of various enzymes and free radicals. Essential oils 
can counteract edema formation by reducing elevated levels of 
arachidonic acid derivatives, such as prostaglandins and leukot-
rienes, thus demonstrating their potential to modulate inflamma-
tory responses.141–143

Anti-inflammatory mechanism of essential oils
Cytokine is a group of pro-inflammatory interleukins (IL-1-β, 
TNF-α, IL-6, IL-15, IL-17, and IL-18), anti-inflammatory inter-
leukins (IL-4, IL-10, and IL-13), interferon-γ, TNF-α. TNF-α is 
responsible for vasodilation and increase of vascular permeabil-
ity, which leads to systemic edema.144 Leukotriene B4 encourages 
macrophage degranulation and activated neutrophils to produce 
superoxide. The excess amount of superoxide damages tissues 
via oxidative stress by reducing the activation and proliferation 
of T lymphocytes.145 IL-1 and TNF trigger the activity of phos-
pholipase (PL) A2, COX-2, and nitric oxide (NO) synthase that 
increases the production of platelet-activating factor, leukotrienes, 
prostanoids and nitric oxide. IL-1 and TNF are also responsible for 
endothelial adhesion and emigration of leukotriene into the tissues, 

where they activate neutrophils and produce inflammation, loss 
of functioning, and tissue damage. IL-8 also activate neutrophils, 
leading to degradation of tissues. The anti-inflammatory interleu-
kins (IL-4, IL-10, and IL-13) and transforming growth factor-β 
conquer the synthesis of IL-1, TNF, and IL-8. Inhibition of COX-2 
enzyme leads to the inhibition of the production of inflammatory 
mediators like prostaglandins (PGE2) and thromboxanes. PGE2 is 
responsible for vasodilation, acute pain, and edema.146 The excess 
production of nitric oxide generates nitric oxide (NO•) and perox-
ynitrite anion (ONOO−) radicals (Fig. 9).

Oxidative burst, an inflammatory trigger, results from a dra-
matic increase in oxygen consumption, leading to the formation 
of superoxide anion radical (O2

•−). This radical can naturally tran-
sition to hydrogen peroxide or be converted by superoxide dis-
mutase. Transition metals can further process hydrogen peroxide 
into hydroxyl radical, which reacts with polyunsaturated fatty 
acids to produce peroxyl radicals. Hydrogen peroxide can also 
form hypochlorous acid by oxidizing halide ions. These radicals 
and reactive species cause oxidative damage to tissues by affect-
ing proteins, phosphatases, lipid kinases, membrane receptors, ion 
channels, and transcription factors like nuclear factor-κB (NF-κB), 
ultimately leading to the modulation of inflammatory responses 
(Fig. 10).147

Essential oils work as an anti-inflammatory agent by inhibit-
ing the effect of pro-inflammatory cytokines, prostaglandins, and 
phospholipase, scavenging free radicals, protecting from oxidative 
bursts, and decreasing vascular permeability.

Works that reflect the anti-inflammatory activity of essential 
oils
Essential oil of both the male and female species of Baccharis 
punctulata decreases the activity of myeloperoxidase enzyme, 
which is produced after insertion of 12-O-tetradecanoylphorbol-
13-acetate for the induction of inflammation. It also inhibits in-
flammatory cell migration.148 It activates hypochlorous acid pro-
duction, a highly cytotoxic compound with high diffusivity and 

Fig. 9. Inflammatory response of interleukins and TNF and curative mechanism of essential oils. (a) Effect of essential oil on interleukins and TNF. (b) Func-
tion of interleukins and TNF. PGE2, prostaglandin E2.
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oxidative activity,149 reacts with lipids, proteins, and nucleic acids, 
and produces a degradative effect on various tissues and developed 
diseases like lung inflammation, inflammatory bowel disease, 
rheumatoid arthritis, cystic fibrosis, sinusitis etc.150

The Pogostemon benghalensis (Burm.F.) Kuntze essential oil 
showed significant anti-inflammatory activity when assayed for 
carrageenan-induced paw edema, xylene-induced ear edema, 
cotton pellet-induced granuloma, acetic acid-induced abdomi-
nal writhing, and ethanol-induced gastric ulcer. It was concluded 
that it worked by inhibiting the release of inflammation causative 
agents, macrophage induction, and release of phospholipase, his-
tamine, kinin, and fibrinolysin mediators. It diminishes cytokinin-
mediated responses, provides gastric cytoprotection, and reduces 
vascular permeability.151

Zanthoxylum myriacanthum var. pubescens Huang essential 
oil inhibited nitric oxide production in dose-dependent manner in 
LPS-induced RAW 264.7 cells.152 Campomanesia phaea essential 
oil gives a marked decrease in the production of IL-6, TNF-α, NO, 
superoxide radical, and NF-κB activity when assayed for anti-in-
flammatory activity.153

Moringa oleifera Lam essential oil protects proteins from de-
naturation and maintains the stability of the membrane.154 Protein 
denaturation is a biochemical process that disrupts the hydrogen, 
hydrophobic, and disulfide bonds, which leads to alteration in the 
structure of the protein.155 It is indicated by certain inflammatory 
responses like redness, pain, heat, swelling, and loss of function 
of tissues in that area, which makes it susceptible to enzymatic 

hydrolysis.156 Lysosomal enzymes produce autoantigens, alter the 
mucosal barrier, and increase cytokine secretions.157

Chamaecyparis obtuse essential oil inhibited the expression of 
cyclooxygenase, reduced the production of PGE2, and diminished 
the expression of TNF-α when assayed for anti-inflammatory ef-
fect.158 Eucalyptus globulus essential oil showed anti-inflamma-
tory activity when assayed. It inhibits protein denaturation and 
diminishes prostaglandins and cytokines production at the dose 
of 250 µg/mL.159 The essential oil of Lavandula angustifolia Mill 
flowers of the beginning stage significantly reduces interleukins 
IL-1, IL-8, and NF-κB.160

Conclusions
The molecular mechanisms underlying the therapeutic potential of 
essential oils remain a complex challenge yet to be fully under-
stood. Numerous studies are underway to explore these potentials 
further. The current review represents an effort to collate and ex-
amine various pathways and mechanisms through which essential 
oils exert their antioxidant, antimicrobial, anticarcinogenic, anti-
diabetic, and anti-inflammatory effects. While several researchers 
have endeavored to pinpoint the exact mechanisms of action based 
on experimental findings, a comprehensive understanding of the 
stepwise pathways and the full scope of essential oils’ potential 
necessitates further in-depth research. This work is a step towards 
unraveling and elucidating the myriad mechanisms by which es-
sential oils may benefit health and treat diseases.

Fig. 10. Protection against oxidative burst by essential oil. HO•, hydroxyl radical; NADPH, nicotinamide adenine dinucleotide phosphate hydrogen; NO, 
nitric oxide; ONOO−, peroxynitrite anion; ROO•, peroxyl radicals.
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